skip to main content


Search for: All records

Creators/Authors contains: "Dick, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Andes are a major dispersal barrier for lowland rain forest plants and animals, yet hundreds of lowland tree species are distributed on both sides of the northern Andes, raising questions about how the Andes influenced their biogeographic histories and population genetic structure. To explore these questions, we generated standardized datasets of thousands of SNPs from paired populations of 49 tree species co‐distributed in rain forest tree communities located in Panama and Amazonian Ecuador and calculated genetic diversity (π) and absolute genetic divergence (dXY) within and between populations, respectively. We predicted (1) higher genetic diversity in the ancestral source region (east or west of the Andes) for each taxon and (2) correlation of genetic statistics with species attributes, including elevational range and life‐history strategy. We found that genetic diversity was higher in putative ancestral source regions, possibly reflecting founder events during colonization. We found little support for a relationship between genetic divergence and species attributes except that species with higher elevational range limits exhibited higherdXY, implying older divergence times. One possible explanation for this pattern is that dispersal through mountain passes declined in importance relative to dispersal via alternative lowland routes as the Andes experienced uplift. We found no difference in mean genetic diversity between populations in Central America and the Amazon. Overall, our results suggest that dispersal across the Andes has left enduring signatures in the genetic structure of widespread rain forest trees. We outline additional hypotheses to be tested with species‐specific case studies.

     
    more » « less
  2. Free, publicly-accessible full text available May 1, 2024
  3. Abstract

    One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Abstract

    Morphology varies enormously across clades, and the morphology of a trait may reflect ecological function or the retention of ancestral features. We examine the tension between ecological and phylogenetic correlates of morphological diversity through a case study of pollen grains produced by angiosperms in Barro Colorado Island, Panama (BCI). Using a molecular phylogeny of 730 taxa, we demonstrate a statistically significant association between morphological and genetic distance for these plants. However, the relationship is non‐linear, and while close relatives share more morphological features than distant relatives, above a genetic distance of ~ 0.7 increasingly distant relatives are not more divergent in phenotype. The pollen grains of biotically pollinated and abiotically pollinated plants overlap in morphological space, but certain pollen morphotypes and individual morphological traits are unique to these pollination ecologies. Our data show that the pollen grains of biotically pollinated plants are significantly more morphologically diverse than those of abiotically pollinated plants.

    Abstract in Spanish is available with online material.

     
    more » « less
  5. Abstract

    Wallace's Riverine Barrier hypothesis is one of the earliest biogeographic explanations for Amazon speciation, but it has rarely been tested in plants. In this study, we used three woody Amazonian plant species to evaluate Wallace's Hypothesis using tools of landscape genomics. We generated unlinked single‐nucleotide polymorphism (SNP) data from the nuclear genomes of 234 individuals (78 for each plant species) across 13 sampling sites along the Rio Branco, Brazil, forAmphirrhox longifolia(8,075SNPs),Psychotria lupulina(9,501SNPs) andPassiflora spinosa(14,536SNPs). Although significantly different migration rates were estimated between species, the population structure data do not support the hypothesis that the Rio Branco—an allopatric barrier for primates and birds—is a significant genetic barrier forAmphirrhox longifolia,Passiflora spinosaorPsychotria lupulina. Overall, we demonstrated that medium‐sized rivers in the Amazon Basin, such as the Rio Branco, are permeable barriers to gene flow for animal‐dispersed and animal‐pollinated plant species.

     
    more » « less
  6. Abstract

    Wallace's riverine barrier hypothesis postulates that large rivers, such as the Amazon and its tributaries, reduce or prevent gene flow between populations on opposite banks, leading to allopatry and areas of species endemism occupying interfluvial regions. Several studies have shown that two major tributaries, Rio Branco and Rio Negro, are important barriers to gene flow for birds, amphibians and primates. No botanical studies have considered the potential role of the Rio Branco as a barrier, while a single botanical study has evaluated the Rio Negro as a barrier. We studied an Amazon shrub,Amphirrhox longifolia(A. St.‐Hil.) Spreng (Violaceae), as a model to test the riverine barrier hypothesis. Twenty‐six populations ofA. longifoliawere sampled on both banks of the Rio Branco and Rio Negro in the core Amazon Basin. Double‐digestRADseq was used to identify 8,010 unlinkedSNPmarkers from the nuclear genome of 156 individuals. Data relating to population structure support the hypothesis that the Rio Negro acted as a significant genetic barrier forA. longifolia. On the other hand, no genetic differentiation was detected among populations spanning the narrower Rio Branco, which is a tributary of the Rio Negro. This study shows that the strength of riverine barriers for Amazon plants is dependent on the width of the river separating populations and species‐specific dispersal traits. Future studies of plants with contrasting life history traits will further improve our understanding of the landscape genetics and allopatric speciation history of Amazon plant diversity.

     
    more » « less
  7. Abstract

    High‐throughput DNA sequencing facilitates the analysis of large portions of the genome in nonmodel organisms, ensuring high accuracy of population genetic parameters. However, empirical studies evaluating the appropriate sample size for these kinds of studies are still scarce. In this study, we use double‐digest restriction‐associated DNA sequencing (ddRADseq) to recover thousands of single nucleotide polymorphisms (SNPs) for two physically isolated populations ofAmphirrhox longifolia(Violaceae), a nonmodel plant species for which no reference genome is available. We used resampling techniques to construct simulated populations with a random subset of individuals and SNPs to determine how many individuals and biallelic markers should be sampled for accurate estimates of intra‐ and interpopulation genetic diversity. We identified 3646 and 4900 polymorphic SNPs for the two populations ofA. longifolia, respectively. Our simulations show that, overall, a sample size greater than eight individuals has little impact on estimates of genetic diversity withinA. longifoliapopulations, when 1000 SNPs or higher are used. Our results also show that even at a very small sample size (i.e. two individuals), accurate estimates ofFSTcan be obtained with a large number of SNPs (≥1500). These results highlight the potential of high‐throughput genomic sequencing approaches to address questions related to evolutionary biology in nonmodel organisms. Furthermore, our findings also provide insights into the optimization of sampling strategies in the era of population genomics.

     
    more » « less